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We analyse the linear water-wave equations for shallow channels with arbitrary 
rapidly varying bottoms. We develop a theory for reflected waves based on an 
asymptotic analysis for stochastic differential equations when both the horizontal 
and vertical scales of the bottom variations are comparable to the depth but small 
compared to a typical wavelength so the shallow water equations cannot be used. We 
use the full, linear potential theory and study the reflection-transmission problem for 
time-harmonic (monochromatic) and pulse-shaped disturbances. For the mono- 
chromatic waves we give a formula for the expected value of the transmission 
coefficient which depends on depth and on the spectral density of the 0(1) random 
depth perturbations. For the pulse problem we give an explicit formula for the 
correlation function of the reflection process. We compare our theory with numerical 
results produced using the boundary-element method. We consider several 
realizations of the bottom profile, let a Gaussian-shaped disturbance propagate over 
each topography sampled and record the reflected signal for each realization. Our 
numerical experiments produced reflected waves whose statistics are in good 
agreement with the theory . 

1. Introduction 
The propagation of surface water waves in a channel with a rough bottom is in 

general a very difficult problem to solve analytically. A number of authors, including 
Carrier (1966), Hamilton (1977), Keller (1958), Kreisel (1949) and Mei & Black 
( 1969), have studied water-wave propagation over an irregular bottom topography. 
A more complete set of references is given by Mei (1983). Our main interest is in the 
linear shallow-water regime (e.g. tidal waves) where bottom irregularities have 
horizontal and vertical variations that are comparable to the depth, and therefore 
the shallow-water approximation is not valid (Hamilton 1977). 

We study the reflection-transmission problem for long waves propagating over a 
rapidly varying bottom topography. We are interested in pulse propagation and, 
eventually, in understanding how nonlinear pulses (solitons) interact with rough 
bottom topographies. In this paper we consider only linear problems. In order to 
understand the role of each Fourier component in the statistics of the reflection 
process, we start by considering the time-harmonic case. 

In $2 we introduce the standard linear water-wave equations and the relevant 
lengthscales for our asymptotic analysis. In $3  we use a conformal map of the 
channel, as Hamilton (1977) did, in order to write (in $4) a modal decomposition for 
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the monochromatic wave potential. Still in $4, we derive a set of stochastic 
differential equations for the amplitudes of the propagating and evanescent modes, 
that lead to a Ricatti equation that can be analysed by asymptotic methods, as in 
Kohler & Papanicolaou (1973, 1974) and Papanicolaou (1978) for time harmonic 
waves and their extension to pulses (Asch et al. 1991 ; Burridge et al. 1989). In $5  we 
formulate the reflection problem for the time harmonic case. We present the results 
from the asymptotic analysis of the relevant stochastic differential equations in $6. 
The main result is that although the shallow-water equations are not valid for 
rapidly varying bottoms, the statistical properties of the reflected waves are 
qualitatively the same as if the stochastic analysis were performed directly on the 
shallow-water equations. We give an expression for the expected value of the 
transmission coefficient showing the localization of long waves (i.e. the transmission 
coefficient decays exponentially with the length of the rough region) and containing 
depth effects. 

In $ 7  we use the results of the time harmonic case to extend our analysis to pulse- 
shaped disturbances by using the theory developed for acoustic waves (Asch et al. 
1991; Burridge et al. 1989). We give an expression for the reflected power which 
shows how its rate of decay in time depends on depth and on the statistics of the 
bottom irregularities. 

In order to understand better the interplay between the different scales in the 
problem, we have developed a computer code that calculates surface wave motion 
numerically. With this code we performed a series of numerical experiments and 
computed statistical properties of the reflected waves generated by the interaction 
with the topographies sampled. In order to be able to compare the theoretical with 
the computational results, we give, in $8, an approximate way of computing the 
effective parameters for scattering. For the numerical experiments we use the 
boundary-element method, which is briefly outlined in 99. The code has been tested 
and calibrated carefully (Nachbin & Papanicolaou 1992) so that it can be used for 
wave propagation over long distances where our asymptotic theory holds. Section 10 
contains several subsections explaining in detail the numerical validation of the 
asymptotic theory. The numerical results are in very good agreement with the 
theory. 

2. Fbrmulation and scaling 
The velocity potential #(z, y, t )  satisfies the linear equations (Whitham 1974) : 

#zz + #yy = 0 for - ho H(z/Z,) < y < 0, 

with the free-surface condition 

#tt = -&/ a t  y = 0, 

the Neumann condition at the bottom 

$hy + ho/& H’(x/&,) 4% = 0 along y = -ho H ( z / l , )  

and the following initial conditions given at the free surface: 

The function f is smooth and has compact support in [O,oo) .  The constant A has 
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dimensions of length squared over time so that f is dimensionless. The bottom 
topography is described by the continuous function y = h, H(x/ lb) ,  where 

11 + n(x/Z,) 

11 
when - L < x < 0, 

when x < - L  or x 2 0. 
H ( x / l b )  = 

We have introduced the lengthscales I, (pulse width), A, (depth), lb (horizontal 
lengthscale for bottom irregularities) and L (total length of the rough region). The 
acceleration due to gravity is denoted by g and the reference shallow-water speed is 
c, = (gh,);. The bottom profile is a rapidly varying, zero mean, random process 
n ( x / l b )  about the undisturbed depth y = -A, and such that In1 < 1. We assume that 
there are no deterministic discontinuities in the mean depth which is h, throughout 
the channel and that the random fluctuations have rapidly decaying correlations, as 
in Papanicolaou & Kohler (1975). Note also that we need not assume that the 
fluctuations, n, are small. 

We now adopt the dimensionless variables 

x' = X / Z b ,  y/ = y /h , ,  t' = ( c o p b )  t ,  

and define some ratios of lengthscales which identify the regime of interest in wave 
reflection when ordered by a small parameter E > 0:  

ho/Zb = O(1) = yh (bottom irregularities are comparable to the depth), 

lp/lb = Yp/€ (incident pulse is broad compared to the bottom irregularities), 

L/1b = Y L / E 2  (pulse penetrates in a long, rough channel). 

The parameters yh, yp and yL are of order one and are related to the microscopic, 
intermediate and macroscopic scales respectively. This scaling was introduced in 
Burridge et al. (1989) where the incident pulse is meant to be a probe : the pulse width 
is broad compared to the scale of the irregularities so it will not feel them in detail, 
but narrow compared to the macroscopic scale (channel length) so that it can resolve 
slow variations in the topography. In this paper, we have taken a uniform mean 
bottom topography in order to simplify the analysis and focus on effects due to the 
rapid depth variations of the channel. 

Consider as the dimensionless potential 9' = q5/[A(e-yp)4]. We introduce the 
square-root term so that the energy of the pulse (in the macroscopic scale, cf. 
equations (50)-(52)) is independent of the dimensionless parameters. We rewrite the 
problem in dimensionless quantities (and we drop the primes) : 

yiq5zz+q5gu = 0 for - H ( x )  < y < 0, (1) 

with the free-surface condition 

9 t t  = -1/yiq5g at Y = 0, 

the condition at the bottom 

q5v+yEH'(z)q5z = 0 along y = - H ( z )  (3) 
and the following initial conditions given at the free surface: 
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The bottom profile is given by: 
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11 +n(x)  

11 

when - yJe2 < x < 0 

when x < - yL/e2 or x 2 0. 
H ( x )  = 

We will study the reflection-transmission problem for equations (1)-(5) when the 
parameter E is small. 

In  order to stay close to the theory developed previously, we will assume that 
the pulse shape function f in (4) is Gaussian-like. The initial surface elevation, 
obtained from ~ ( x ,  t )  = - $ t  (z, 0, t ) ,  is then an N-shaped pulse, which is unusual for 
a water-wave problem. The typical case is when the initial surface elevation is 
Gaussian-like and then the initial velocity potential is S-shaped. The analysis we give 
here extends to  this case, as we explain a t  the end of $7 .  

3. Conformal mapping 
The analysis of (1)-(5) when e is small is most convenient when the irregular 

bottom topography is transformed by a change of variables to a flat one. In the new 
orthogonal curvilinear variables (&[) the equations have the form : 

with the free-surface condition 

the Neumann condition at 

and the initial conditions 

the bottom 

$ s = O  a t [ =  -yh, 

given at the free surface. The new coefficient m(E) in the free-surface condition is 
related to the bottom irregularities. The equations given in this form suit better the 
modal decomposition presented in the next section. 

Following Hamilton (1977) we now describe the conformal mapping from (2, y) to  
(6,c). Figure 1 gives a schematic representation of the two-coordinate systems. We 
define a symmetric flow domain by reflecting the original one about the free surface. 
We denote this domain by SZ, where z = x + iyh y and consider it as the conformal 
image of the domain SZ, where w = g+i< with 14 < yh. Then 

with x and 
map is a harmonic function that is defined by 

a pair of harmonic functions on a,. The imaginary part of the conformal 

dy"(t ,5)  = 0 in Qw, 

with Dirichlet boundary conditions 
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x = - y L / 2  

FIGURE 1. Coordinate systems xy and 55 and the symmetric flow domain. 

where x(5, g )  is its harmonic conjugate. We have a Green's function for problem (1 i), 
(12) which is slightly different from Hamilton's because we keep depth effects 
through the depth parameter yh. The Green's function, vanishing along the lines 
5 = f yh, is given by 

where Re stands for the real part and the overbar denotes complex conjugation. 
Using Green's third identity we have 

In the (5, [)-coordinate system the rapidly varying bottom topography has been 
straightened out but now the coefficient in the surface boundary condition is rapidly 
varying, although in a slightly smoother way because of the depth effects. To express 
this coefficient in (6,  [)-coordinates note first that  

m 

-sech2 -(x-y) d x = i t a n h  
I y m 4 " ,  [2", 1 

Hence as yh J. 0 the kernel goes to a delta function and the original perturbations of 
the bottom are felt at the free surface level without any smoothing. Another way of 
saying this is that  when yh J 0 the bottom variations are on a sufficiently long scale, 
compared to  the depth scale, so that the coordinate transformation is not necessary. 
Using the definition of the bottom profile H(x) we may write gc0 (to, 0) = 1 + m(5,) 
with 

Regarding the initial conditions (given in the transformed coordinate system) we 
note that by starting with the pulse located over a region of uniform depth, the initial 
data are affected very little by the mapping as 8 tends to zero. We can replace x by 
E, noting that away from the rough region ys, (t, 0) z 1 (how far depends on Yh) and 
therefore from the Cauchy-Riemann equation xE ( & O )  w 1. We can then take the 
interval [x = -yL/e2, x = 01 occupied by the rough channel as thc image of 
[6 = - y;/e2, 5 = 01. Up to a correction of order e2, y i  is equal yL. 

I 1  FLM 241 



316 A .  Nachbin and G .  C. Papanicolaou 

4. Modal decomposition for the time harmonic problem 
Having transformed the problem to one with a flat bottom topography but with 

a variable coefficient in the free surface condition, we can now decompose the 
potential into a superposition of wave modes. The interplay between these modes is 
better understood if we initially consider time harmonic waves (i.e. monochromatic 
waves of frequency w ) .  We will see in the next section that only propagating modes 
contribute in the stochastic problem. We then extend our results to the original pulse 
problem. 

We now introduce the modal expansion. For simplicity we will change notation so 
that by x and y we mean the orthogonal curvilinear pair (6 , c ) .  Consider the time 
harmonic case in which waves of a given frequency w are studied. Assume that the 
potential is the form 

@(x, y, t )  = ePiwt #(x, y). 

The reduced potential #(x, y) must satisfy 

with 

and 

A propagating d e  of the unperturbed problem, where m = 0, is a solution of the 
form 

#0cx, = e*ikoz$O (Y), $0 (?/I = cash (kO (Yh+Y)) ,  (19) 

(20) 

(21) 

where w2 = -kI/y,tan(kjjh) (i= 1 , 2 7 . . . ) .  (22) 

where k, satisfies the dispersion relation 

w2 = k,/yh tanh (koyh). 

An evanescent mode has the form 

$ j  ('7 ?/) = exp (k 4.1 @j (y)7 $ j  (y) = cos Lkj(Yh +y)l, 

The reduced eigenfunctions $I (y) ( j  = 0, 1, . ..) form an orthogonal set (Kreisel 1949; 
Nachbin 1989). 

We now express the solution to the perturbed time harmonic problem in 

- y J 2  < z < 0 

as a superposition of the unperturbed modes with variable amplitudes : 

#(x, y) = cash (kO (Yh +y)) exp (ikO + B ~  cash (k0 (Yh +y)) exp (-i kO x, 
a 

3-1 

+ cos r k j  (Yh+Y)I exp Lkj ( x + y L / 8 2 ) ]  + B j  (x) cos rkj (Yh +y)l exp ( k j z ) ) .  (23) 

The amplitudes A,(x), B,(x), A,(x) and B,(x) are stochastic processes whose 
statistical properties we wish to determine. As in the variation of constants method 
in ordinary differential equations we may impose the additional condition 

[A;@) exp (ik,z) +B;(z)  exp ( - i k , ~ ) ]  
m +x I - 1  k i (z )exp[  - k , ( x + $ ) ] + B ~ ( x ) e x p ( k I x ) } $ ,  = 0. (24) 

From the equations for # we get equations for the mode amplitudes. Multiplying (16) 
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by $i, integrating over y from -yh to 0 and integrating by parts in the y variable 

which represents an infinite system of first-order differential equations when we use 
(23)  and ( 2 4 ) .  We complete our infinite set of differential equations by also projecting 
condition (24) .  Redefining the amplitudes of the evanescent modes as 

A, = A, exp [ - k, (z + yL/e2)] 

and Bj = B, exp ( k i z )  we obtain the system 

where ($j$)y-o indicates evaluation along the free surface. Note that $ is given by 
(23)  evaluated at y = 0. 

By writing the water-wave equations in the orthogonal curvilinear coordinates we 
have derived an infinite system of stochastic differential equations for the amplitudes 
A ,  and B, of the propagating modes and the amplitudes A, and B, of the evanescent 
modes. We are now in a position to formulate the reflection problem. We will show 
that only two equations, of this infinite system, are relevant to the asymptotic 
analysis given in $ 6 .  

5. The reflection problem for the time-harmonic case 
The main point of our asymptotic analysis is that only propagating modes 

contribute to the statistical reflection-transmission problem in our scaling. This is 
best seen in the reflection and transmission of time-harmonic wavetrains incident on 
a segment of channel that has a rough bottom. We will analyse this problem first, in 
this and the next section, and return to pulses in $7. 

When a wave of unit amplitude is incident from the right the amplitude equations 
(25)-(28) have to be solved in -yL/e2 < x < 0 subject to the two-point boundary 
conditions 

A , ( - y , / ~ ~ ) = 0 ,  A j ( - y , / ~ ' )  = O ,  B , ( O ) = l ,  B,(O)=O. 

These boundary conditions are not exact because m(x) (cf. (15)) is not identically zero 
(but it decays exponentially fast to zero) away from this interval and the decay rate 
is proportional to (ya 2 - l  on the macroscopic scale. This discrepancy is negligible in 
the asymptotic limit analysed here. 

The system of equations (25)-(28) can be written in matrix form when the 
amplitudes are arranged into the vector 

[A,@) .  . . A,@).  . . B,(z) . . . B j ( z ) .  . . IT. 
11-2 
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Then the system becomes 
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where @ denotes the fundamental solution matrix, D is the diagonal matrix 
diag(0, - kj, . . .}, j = 1,2, . . . and Mi, are infinite-order submatrices obtained from 
the right-hand side of the system. If we partition 9 in the same way as we did for M 
and let 2 = @12@;i then the solution of the two-point boundary value problem is 
obtained from 

The reflection matrix 2 satisfies the matrix Riccati equation 

[A,  ( x )  ... A j  ( x )  ...I' = Z(x) [B, ( x )  .. .Bj  (x) ... 1'. 

dZ/dx= DZ+ZD+ M,,Z+M,,-ZM,,Z-ZM,, (30) 

in --JE' ,< x < 0 with Z( -yYL/e2)  = 0. 
Since Z,,(O) is the reflection coefficient, the quantity of interest, we must now 

analyse the stochastic Riccati equation (30) as e tends to zero. We know from basic 
localization-length ideas (Arnold, Papanicolaou & Wihstutz 1986 and rcferences 
therein) that low frequencies will penetrate into a channel which is long. We also 
know that high-frequency modes are in a dcep-water regime and therefore are 
insensitive to bottom variations. These modes pcnetrate into a long rough channel 
and generate no reflection (this is confirmed in Devillard, Dunlop & Souillard 1988). 
Hence we will focus on long waves and we introduce the scaled frequency w + EW and 
the macroscopic distance into the rough channel x --f XI€'. Scaled in this way, (30) is 
ready for asymptotic analysis except that we must first evaluate the approximate 
form of D and Mij. We find easily that for e small 

k, z + e ~ ( l + ~ e ~ d y ~ ) ,  (31 1 

and 
"2W'Yh 

k j  (z-i) (j = 1,2, ...), 

while the coupling matrices become 

1 ... ( -  1 ) y  p-' ... ( -  1 ) j p - l  

(33) 
... ... 

/3* ...(- 1)ip ( - 1 ) j P  [ ;::: ; ] (34) 
... 

with a t ( x )  = a ( x / e 2 ) ,  a(x) = O..%nz(x)/y,, p(x) = exp I( -~wz)/E]. (35) 

We can now use the asymptotic analysis for stochastic equations on (30). The most 
directly applicable version of this theory is in Kohler (1977) but it is also described 
in Papanicolaou (1978), Papanicolaou & Kohler (1975) and in references cited therein 
as well as in Asch et al. (1991) and Burridge et al. (1989). The typical system given 
in Kohler (1977) and Papanicolaou & Kohler (1975) has N propagating and M 
decaying solutions. Using the approximations given by (31) and (32) we see that the 
entries of the first two  matrices of the Riccati equation (30) are 

[ZDfDZ],, NN - - ~ / y , ( i + j ) Z ~ ~  (i , j  = O,1,2, ...), 



Water waves in shallow channels of rapidly varying depth 319 

and therefore the only non-decaying cntry is Zoo (x). This is a complex-valued entry 
of the reflection matrix, which implies N = 2. All the other entries are decaying and 
there are infinitely many of them. We could have truncated the modal expansion so 
that only a finite number of evanescent modes were taken into account. As we shall 
see, however, they play no role in the asymptotic analysis of the stochastic Riccati 
equation anyway. 

For the non-decaying mode we have 

where the terms omitted are of order one relative to E and have zero mean so that 
they do not contribute in the limit. The vector field for this equation depends only 
on the entries of the first column of 2. These are the only entries that  could couple 
with Zoo in the asymptotic analysis, as given in the second term of the drift coefficient 
(cf. Kohler 1977, p. 527). In  the next section we will give the diffusion equation that 
comes from the asymptotic analysis of these equations. The elements in the first 
column of 2 satisfy (for j 2 1) : 

bj0 = f(~~jo)+~[.o+~jo(.oo/3~ (2)+/3(z) g (37) 
f-1 dx 

From the formulae in Kohler (1977) (for the drift coefficient of the associated 
diffusion problem) we see that when the order 1 / ~  right-hand side is evaluated a t  
Zjo = 0, j 3 I ,  it becomes identically zero. Hence the second contribution to  the drift 
coefficient is zero. The third contribution is also zero for it comes from averaging the 
order one (mean zero) term in the equation for Zoo. Thus, to find the associated 
diffusion operator we can restrict ourselves to the equation for Zoo alone, with all Z5, 
in i t  equal to zero. 

6. Asymptotic analysis of the reflection process 
In  the previous section we showed that the only non-decaying entry of the 

reflection matrix 2 is Zoo so we restrict our study to it. We are primarily interested 
in the modulus of the reflection coefficient Zoo. By adopting a polar coordinate 
representation we shall characterize its asymptotic limit as E tends to  zero in terms 
of a one-dimensional diffusion process. Let 

Z 00 = rei$, 

and consider the vector field in (36) already evaluated a t  Z50 = 0, j + 0. From 
conservation of energy we know that T E  [0,1]. Letting r = tanh (@), with 0 > 0 the 
stochastic equation (36) becomes the simple system 

- df3 = -sin(c-p+%), 2a" 

dx e E(Y,P 

where a6(x) is a random process in [ - yL, 01 defined by (35). 
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We will not go into details of how the solution of (38) and (39) converges, as e tends 
to zero, to a diffusion process as this is done in the papers cited above. We will define 
directly this limiting diffusion from its infinitesimal generator, that is, from its 
diffusion and drift coefficients. They are calculated according to the formulae given 
in Kohler (1977) and this leads to the diffusion operator 

where a,, = J:E{m(a) m(O)} ds 

is the integral of the correlation function, or its Fourier transform a t  zero frequency. 
It is therefore non-negative and we assume that it is positive here. It is very difficult 
to compute it because it is related to the bottom topography n (cf. ( 5 ) )  through the 
conformal mapping and (15). We return to its calculation in $8. If we solve the 
diffusion equation 

with u(8,O) = tanh2 ($9) 

then u(0, yL) is equal to E{JZ,,  (0)12}, as E + O  (Kohler 1977). However, in this limit 
1 - 12,,12 = ITI2 where T is the transmission coefficient for the region [ - yL, 01 over the 
rough bottom. The solution to the diffusion equation above is given in Kohler & 
Papanicolaou (1973,1974) and Papanicolaou (1978). We have the formula 

u, = You, 

dt. (42) 
t 2 Y L w 2  nt sinh nt 

cosh2 nt 
limE{IT12) = exp -- 
E*O 

( Y L  8Y:, w2 amm) -m exp (- -amrn) 2Y:, 

Thus the theory predicts an exponential decay of the transmission coefficient with 
scaled distance yL, that is, localization of the wave energy. Note the effect of the 
scaled depth yh = h0& : deeper channels allow more transmission. Alternatively, we 
can say that irregularities varying on a shorter scale allow more transmission. 

A theory for the localization of time-harmonic water waves is given by Devillard 
et al. (1988), while the results of experiments in a wave tank are presented in Belzons, 
Guazelli & Parodi (1988). They considered a bottom topography which is described 
by a random step function and the ‘wide-spacing approximation’ (i.e. the horizontal 
scale of the steps is large compared to its vertical lengthscale). No restriction is made 
on the wavelength A. For the full, linear potential theory they estimate the 
localization length in both limits A+ 00 and h + O  and conclude that it diverges 
exponentially in the latter. This is a fundamental difference between potential theory 
and the shallow-water theory (or its analogue, the acoustic wave theory given in 
Burridge et al. 1989). This is mainly due to the finite (and not infinitesimal) depth of 
the channel. 

In our theory the topography is described by an arbitrary function for which the 
horizontal scale of the bottom variations and their amplitude, as well as the depth, 
are comparable. The fact that we restrict the range of wavelengths (by introducing 
the scaling W + E W )  has a negligible effect on the pulse reflection problem studied in 
the next section. We should point out that for the pulse-shaped disturbance to be 
considered, not only should higher Fourier components have amplitudes that are 
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exponentially small but also they must be in a deep-water regime. This is supported 
in Devillard et al. (1988). 

7. The two-frequency problem and the statistics for pulse reflection 
In the section above we studied the reflection-transmission problem for 

monochromatic waves. We now consider the case of pulse-shaped waves, which 
involves a full band of frequencies. We will extend to water waves the theory 
developed by Burridge et al. (1989) for acoustic wave pulses in random media. We 
will present the main results obtained from the asymptotic theory developed in 
Burridge et al. (1989) and the formulae we will use in the numerical validation of the 
theory. 

To analyse the pulse reflection problem ((6)-( 10)) we first rewrite it in the scaled 
macroscopic variables by letting 5 = x / 2 ,  < = y and t = 7/c2: 

E44zz+$rg = (-Yh < Y < O ) ,  (43) 

with 

and 

The initial conditions are : 

(44) 

(45) 

We now show how the results of the previous section can be used to make the 
connection between the water-wave pulse problem and the acoustic pulse problem. 
When the bottom is flat (i.e. m(x /e2 )  = 0) we can superimpose the propagating modes 
and write for the left-going wave 

#(x, y , ~ )  = J:m 6(w)cosh[ko(yh+y)]exp(-i(kox+w7)/e2)do. (48) 

As in the previous section we consider low frequencies and we put the corresponding 
approximation for the wavenumber ko in the expression above to get 

4 ( x , y , 7 )  x ~ ~ ~ 6 ( w ) e x p [ - i w ( x + ~ ) / e ] d w  = @ (3 - (49) 

We can do the same type of approximation for the right-going wave. Clearly this 
function @ satisfies the equation 

Qn - Qz. = 0, 

In the time-harmonic case we saw that the evanescent modes played no role in the 
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asymptotic limit of the inhomogeneous case. We will therefore make the shallow- 
water approximation of (43)-(47) right a t  the beginning by dropping the evanescent 
modes and by considering the pulse reflection problem below: 

[I +m(y,z/€2)1@7r-@ZZ = 0, (50) 

We have adjusted the scales so that pulses are considered to be of width E (in the 
macroscale). We p u s t  now consider the effective correlation length of the stochastic 
process m(z) ,  owing to the presence of the parameter yp in its argument. 

We must clarify in what sense solutions of (43)-(47) and of (50)-(52) are close. The 
statistical properties of the solutions of (50)-(52), for example the mean and the 
mean square of @ outside the rough region, are close to those of the original problem 
(43)-(47) when E is small. We have demonstrated this with the theory of the single 
frequency reflection and transmission and we have conducted extensive numerical 
simulations (see Q 10.4) that  support this approximation. 

To analyse equations (50)-(52) we use the theory developed by Burridge et al. 
(1989) for acoustic wave pulses in random media. The equations for acoustic waves 
are 

p ( 4  Ut (x, t )  + P, (x, t )  = 0, 

where u(x, t) is the velocity, p ( x ,  t) is the pressure, p(x) is the density and K(x) is the 
bulk modulus, which in the present analogy is taken to be identically equal to one. 
We eliminate the pressure so that 

- p ( 4  Utt (x, t )  + u,, (z, +o, (53) 

This problem is equivalent to  (50)-(52). 
We present the main results obtained from the asymptotic theory developed in 

Burridge et al. (1989) and the formulae we use in the numerical validation of the 
theory. For the analysis of this problem we Fourier transform in time, choosing a 
frequency scale appropriate for the pulse f(t) : 

f ( w )  = eiwtf(t) dt where t = 7 / ~ .  

We will determine the statistics of t,he reflected potential by studying 
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By Zoo (w) we mean the reflec$ion coefficient (at  x = 0)  corresponding to  an  input of 
frequency w and amplitude f ( w ) .  We consider the above expression as a stochastic 
process in a, with t held fixed. That is, for each t we consider a 'time window ' centred 
at t ,  and of duration on the order of the pulse width, with the parameter a measuring 
time within this window. Statistical properties of the reflected signal over windows 
with different centres become independent in the limit e + 0. 

We will calculate the power spectrum of the window reflection process R;, (a) as 
E + 0. Consider the correlation function 

Changing variables (wl = w - $h and wz = w + g h )  we define 

u"(w,h) E { Z o , ( ~ - & h ) Z o ~ ( ~ + ~ h ) ) .  

Then q,f(a) is such that 

dwexp( -iwa)lfiw)12- dheihtlimu"(w,h). (59) 
2R -m ' €40 

The problem reduces to studying the joint statistics of two neighbouring frequencies 
(cf. (58)) in the limit as E goes to zero, if we ignore the difficulty in interchanging this 
limit with integration which requires more analysis. The limit 

u ( w ,  h )  = lim u" ( w ,  h)  
€10 

exists, and its transform is given by 

wzj7 

[ 1 + W2j7t]2 ' 
eiht u(w,  h)  dh = 

with the constant j7 = ct,,/yh. These results are given in Burridge et al. (1989). From 
the definitions above we find the limiting local (or windowed) power spectral density 

S t ( 4  = / ;aeiwt,f(a)da = I h W ) I 2 P ( t , W ) ,  (61) 

and the corresponding local correlation function 

This formula gives the rate of decay in time of the correlation function for the 
reflected velocity potentia!. When u = 0, (62) gives the mean-square of the reflected 
velocity potential and if f ( 0 )  9 0 and is finite then 

I n  $10 we give the numerical validation of this theory. We compare 1 ? ~ , ~ ( 0 ) ,  as a 
function of time t ,  with the results obtained from a series of numerical experiments. 
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The theory we have outlined above, based on Burridge et al. (1989), works for 
incident wave pulses that are Gaussian-like in the velocity potential and have 
therefore N-shaped incident wave elevation, as we noted a t  the end of $2. The theory 
can be extended to  incident pulses with Gaussian-like wave elevation so that the 
incident velocity pqtential is S-shaped. In  that case the Fourier transform of the 
pulse function f(t), f ( w ) ,  behaves like w-l near w = 0. Formula (62) is still valid even 
if If(w)I2 - w-2 for w near zero. However, the long-time behaviour of the reflected 
wave potential is different to (63) : 

This is the main difference between a Gaussian-like incident wave elevation and an 
N-shaped one. 

8. Calculating the effective parameters for scattering 
Through conformal mapping we are able to do scattering for bottom variations of 

large amplitude. As presented in $ 3 we decompose the full wave propagation problem 
into two distinct stochastic problems. First, we have a purely geometrical one in 
which we transform a random coefficient n(z)  into a smoother random coefficient 
m(E). No dynamics is involved. The second problem is the scattering problem 
presented in $6 with m(E) a given stochastic process. 

The final result for the scattering problem, namely the reflection statistics, 
depends on a single number a,, defined a t  (41). In  order to calculate its value we 
must solve the conformal map problem. Dias & Vanden-Broeck (1989) present the 
solution for a steady free-surface flow past a submerged triangular obstacle of 
arbitrary height. Their solution is based on a conformal mapping that has 
singularities located at the apex and base of the triangle. The fact that  they consider 
the flow to be incompressible, irrotational and steady means that their potential and 
stream functions are analogous to our variables E and 5. We could then extend their 
solution to a sequence of triangular obstacles of random height and width or we could 
use the Schwarz-Christoffel transformation for a polygonal profile. The Schwarz- 
Christoffel transformation lends itself readily to  the numerical calculation of am, 
for polygonal bottom topographies. 

I n  the present paper we compute the parameter am, in a simpler fashion, assuming 
that the bottom fluctuations are small. From (15) we see that m(E) is given as the 
convolution of a smooth kernel with the composition of the random perturbation and 
the real part of the conformal map. We have assumed, up to  now, that n(z)  is 
an O(1) perturbation. We now assume that in fact n(z) = 6N(z) and we expand 
z(6, -yh; 6) = x8(E, -yh) in terms of the small parameter 6. Start by considering the 
problem 

4 z ,  Y) = 0, 
6, = 0 a t  y = 0, 

~ ,=~ ,+6’ ) ’hN’ (X)g ,=0  a t  y =  - y h ( l + W ( Z ) ) .  

To solve this problem using perturbation theory we first approximate the equations 
as follows: 

a ( x , Y )  = 0, 
5, = 0 at y = 0, 
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Assume the solution to be of the form E8 (x, y )  = 6, (2, y) + &El (x, y )  + . . .. It is clear 
that 5, should be equal to x. Fourier transforming the order 6 equations we find that 

(65) E8 (2, Y 1 = 2 + 861 (z, Y 1 + 0(S2), 

with 

Inverting relation (65) at the undisturbed bottom, we have 

with 
m 

g(6) = \ ikyh coth (ky,)#(k) eiktdk. 
J -m 

The random coefficient in the evolution equation becomes 

4 5 )  = W * N ) ( E )  +a2 (K*”g) (51, (69) 

where the kernel K is defined in (15). We must now calculate 

x J2 [aGn+B[:E((K*N) (s) (K*N’g) (0) + (K*N) (0) (K*N’g) (s))ds]. (70) 

We have called (K*N) (s) a d @ ) .  By noting that 2 a ~ 3  = 6, (k)lk-, it is easy to see that 
f ig  (0) = eN (0) and therefore afljR = a”. Thus the smoothing effect is not present in 
the first term. We may write 

9. The numerical method 
Two numerical methods were tested. A comparison between the finite-difference 

method and the boundary-element method can be found in Nachbin (1989) and 
Nachbin & Papanicolaou (1992). The latter uses a boundary integral formulation for 
Laplace’s equation and reproduces very well the dispersive nature of gravity waves. 
We present a brief description of the method. The boundary aa of our computational 
domain is divided into four parts: 

rl and r, +left-hand and right-hand ends of 8 2 ,  
r2 -+ linear free surface, 

r, -+ impermeable random bottom. 

The integral formulation for the potential q5 is essentially the same as the one 
presented by Salmon, Liu & Liggett (1980). The boundary integral equation (BIE) 
is provided by Green’s third identity : 

In  this equation #(P) denotes symbolically the potential evaluated at a point P along 
the boundary aQ. The same applies to the point Q. In  the integral, dQ designates a 
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line element. The constant Op is equal to n when P is a point at a smooth segment 
of ClR and is equal to the internal angle a t  corners. Details can be found in Brebbia, 
Telles & Wrobel (1984), Jaswon & Symm (1977) and Nachbin (1989). The boundary 
conditions are : 

(73) 

(74) 

and the bottom condition 9% = 0 at r,. (75) 

1 
the radiation condit,ion -$- = -9  t at  r,, r,, P2 

9t = -' the free surface conditions 1 at r,, 
v t  = (l/P"$J 

The water elevation is given by ~ ( x ,  t ) .  These equations are slightly different from 
those found in Salmon et al. (1980) because we have scaled our equations differently 
(Nachbin 1989; Rosales & Papanicolaou 1983; Whitham 1974). We have introduced 
the parameter /3 = h,/h, where h is a typical wavelength. Note that the boundary 
integral formulation enables the Seumann condition (along r,) to be implemented 
in a very simple fashion for any random bottom profile. The notation adopted is: 
d/d% = (P'a,, a,). ( n l ,  n 2 ) ,  n is the normal vector and p = [ ( Z ~ - X J ~ + / ~ ~  ( ~ , - y ~ ) ~ ] $ .  

The Point Collocation Method (Brebbia et al. 1984) is used in the discretization of 
the BIE, where a linear finitc-element approximation is used for the potential and its 
derivative. 

The differencing schemes for the boundary conditions are also given in Salmon 
et al. (1980). The implicit free-surface condition 

is imposed in the discrete BIE: whilc 

is used to update 7.  The parameter 8 is taken to be equal to i, which leads to a higher- 
order numerical dispersion relation (Nachbin 1989 ; Nachbin & Papanicolaou 1992). 

10. The numerical experiments and comparison with the theory 
10.1. Introduction 

The rapid variations in the bottom topography prevent a simplification of the water 
wave equations. The (hyperbolic) shallow-water equations are not valid (Hamilton 
1977) and we must use the full linear water wave equations, which are dispersive. The 
parameter /3 is taken to be small, but finite (/3 = 0.08), and long channels will be 
considered. The initial data used has a full band of frequencies and therefore 
numerical dispersion has to be kept a t  a very low level. Tests verifying the accurate 
dispersive behaviour of the method were performed and are presented in detail 
elsewhere (Sachbin 1989 ; Nachbin & Papanicolaou 1992). The boundary-element 
method led to very good results. 

Channels with rapidly varying periodic bottoms were also tested. As expected, no 
reflection is observed. Nevertheless the wave has an effective shallow-water speed 
smaller than one, as predicted in Rosales & Papanicolaou (1983). In contrast, when 



Water waves in shallow channels of rapidly varying depth 327 

we add a small random perturbation to the periodic bottom profile the reflection 
increases substantially, which is a manifestation of localization. These experiments 
are shown in Nachbin (1989) and Nachbin & Papanicolaou (1992). 

10.2. The geometry of each problem 
I n  each realization the underlying flat channel is defined by the rectangle [ -2 ,  
231 x [- 1,0]. Along the segment (2.0 < x < 22.0; y = - l.O} of the bottom we add 
random O( 1)  perturbations generated as follows. Consider the random variables h,o 
and b, to be uniformly distributed in [ -S ,S ]  and [-0.31,, 03.1,] respectively. The 
parameter lb, as defined earlier, is a typical length of the bottom inhomogeneities. 
Consider an uniform partition of the interval [2.0, 22.01 into segments of size 1,. 
Perturb randomly the position of each interior node of this partition by b,, the sign 
indicating to  the left ( - ) or to the right ( + ). Attach to these positions the random 
vertical perturbations h, to  the undisturbed bottom. Connecting thesc points by 
straight lines we have the rough bottom’s profile. Moreover, the bottom along 
x < 2.0 and x 2 22.0 is flat ( y  = - 1.0). At the ends x = - 2.0 and x = 23.0 we impose 
the radiation condition which allows waves of unit speed to propagate out of the 
computational domain. 

Consider the function 

1c.k t )  = 1/(0.5yP)texP ( -  (x-t)2/(o.53,p)2). 

The initial conditions, along the free surface, are: 

The values of yp considered are such that at the ends of the channel the potential is 
taken to be zero. A typical geometry is given in figure 2. 

In  order to record the potential for the reflected and the transmitted waves, two 
fixed points (nodes) are chosen. One is a t  the beginning of the rough region (node with 
coordinates x x 2.0 and y = 0) and the other a t  the end (x x 22.0 and y = 0). The 
waves used in our experiments will travel over the rough channel (approximately 20 
times its length) and will propagate out of the computational domain without 
reflecting at the end x = 23.0 owing to the radiation condition imposed. In the 
numerical experiments waves propagate from left to right while in the theory we had 
incoming pulses.from the right. This does not really matter as long as we have 
reflection being recorded at the beginning of the rough region. The dimensionless 
shallow-water speed is one and we allow our code to run for about 45 time units so 
that disturbances generated a t  the end of the rough region return to the reflection 
node defined above. Calling this node xj, we are able to record for each channel 
sampled (say labelled by w,) the reflected signal RZj ( t  ; w,)  = $(xj, 0, t ; w,) .  

10.3. The theoretical curves 
The theoretical curves are constructed by using (62) and the approximations 
obtained in $8, We will compute the integral numerically, a t  the centre = 0 of the 
window, for each value of t (time). 

The parameter $7 is approximated by S2a,,/y,. In  $6 the Fourier transforms took 
into account the pulse’s width. The theoretical curves will have as reference a pulse 
of unit width. Thus from the definition of the parameter yp the following calculations 
are done with the effective correlation lengths E/yp.  
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Random topography 

Initial velocity potential (Gaussian pulse) 0.5i / I \  
Free surface I 

Along each segment of the continuous piecewise-linear bottom profile we write the 
random perturbation As 

S 
N ( z ,  +s; w )  = E/Yp-SN(x i  ; w )  + - N ( X , + ~  ; w )  (SE [0, s/yp]), 

E I Y p  “lYp 

where s is a local coordinate within this segment. Considering the stochastic process 
to be stationary it follows that 

Assuming that the stochastic process N ( s ;  w )  is uniformly distributed in [ -yh, yh] we 
have that 

In  our experiments yh = 1, 6 = 0.3, 1, = 8 = 0.1 and yp = 0.7, 1.0 and 1.3. 
From the initial data, where f denotes the pulse-shaped potential, it is clear that 

f i w )  = Jym eior f(7) d7 = (27t)fexp (-&P) where 7 = t / e .  

The values of C,,,(O) are computed, as a function of time, using a Gauss-Hermite 
quadrature (Abramowitz & Stegun 1968) and are shown in figures 3 and 4. 
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FIGURE 3. Pu'umerical validation of the asymptotic theory and convergence 
to the limiting function. 
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FIGURE 4. Comparison using different correlation lengths. 

10.4. Numerical validation of the theory 
Using the theory presented ($7) we write 

for N large enough (N is the number of realizations). The left-hand side is computed 
from the theory and the right-hand side from the numerical experiments. 
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In figure 3 we see that the theoretical and numerical curves are in good agreement. 
As we take more realizations into account the fluctuations stabilize and converge is 
evident. In figure 4 we compare different scales. By letting yp vary we have wider or 
thinner pulses and we can see the effect on the results. Thinner pulses will generate 
more reflection. Their spectra have a broader range of frequencies and localization of 
the higher modes is felt in the reflected signal. We may say that the pulse sees more 
details of the bottom topography. The wider pulses tend to average the fluctuations 
from the bottom’s inhomogeneities. The amount of reflection is smaller as well as the 
amplitude of the fluctuations. We note that for the wider pulse the results are not as 
accurate as in the other cases. There arc two possibilities. One is that we probably 
need a more accurate value for the parameter 7, by including more terms from the 
expansion in 6 or by using a Schwarz-Christoffel transformation (cf. $8). The other 
is to use a more general idea which uses the localization length as a scaling quantity 
(Sheng et al. 1986; White et al. 1987). 

The discretization of a long channel with a rapidly varying bottom requires a very 
fine mesh. We used two linear boundary elements along each side f, and r,, 636 
along the free surface r2 and 680 a t  the bottom r,. Thus we have two dense non- 
symmetric matrices (of order 1320) to be calculated. For the evolution scheme a total 
of 2700 timesteps (for the 45 time units) are eonsidered. A supercomputer is used and 
vectorization plays an important role. Each realization takes less than 2 min of CPU 
time. To compute the results for 160 different channels (cf. figure 3) it takes 
approximately 5 h on an ETA10. 

11. Conclusions 
We have considered water-wave propagation in shallow channels with rapidly 

varying random topography. The scaling adopted for the linear water-wave 
equations emphasizes a geometry in which the typical depth is comparable to the 
horizontal and vertical lengths of the bottom’s irregularities. Hence, order one 
perturbations are considered. This scaling prevents an asymptotic simplification a t  
the level of the equations. The full linear potential theory must be used. 

We presented an asymptotic theory for the statistics of the reflected signal. The 
derivation of a system of stochastic differential equations for the amplitudes of the 
propagating and evanescent modes is most convenient when we change variables and 
transform our channel to a flat onc. The interplay between these modes is better 
understood when we consider monochromatic waves (time harmonic case). 

The application of an asymptotic theory for the solution of the stochastic 
differential equations allow us  to characterize the expected value of the transmission 
coefficient. For an incident monochromatic wavetrain of unit amplitude and 
frequency w we have (we repeat our results for convenience) : 

On a practical application, where we can ignore other dissipative mechanisms such 
as viscosity (see Devillard et al. 1988 for a discussion on this matter), the formula 
above can be used to estimate how much transmission is obtained at the end of the 
rough region of the channel. If the relative scales are the same as in this paper, all 
we need to  do is to  define the values of the parameters yL = L / h ,  and yh = h,Jl,, 
(which depend on the typical lengths of the channel) and compute the value of the 
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parameter amm by integrating the correlation function of the random perturbation 
(cf. (41)). We give an example of how to compute am, in 3 10.3. The expected value 
for the transmission coefficient follows by computing the integral above. 

The time-harmonic case shows that the theory developed leads to results that  are 
basically the same as for the acoustic wave equation (for which we could make an 
analogy with the shallow-water equations). An extensive set of references for the 
acoustic theory is given in the review paper by Asch et al. (1991). For the propagation 
of a pulse we use the results obtained for acoustic pulse waves (see Burridge et al. 
1989). We considered the initial water-wave potential to be a Gaussian pulse which 
is long compared to the bottom variations and which propagates over long distances. 
The expected value for the reflection coefficient is obtained by evaluating the 
correlation function (of the reflection process) at the centre u = 0 of the windowed 
process (cf. (62)): 

This result shows the finite depth effect through the parameter yh. We again point 
out that only the correlation function of the random 0(1) depth perturbation plays 
a role in the final result, through the parameter amm. Giyen that the initial pulse 
shape f is known (and consequently its Fourier transform f ) we can readily estimate 
the decay of the correlation function of the reflection process by numerical 
integration of the expression above. We graphed time-dependent curves for Ct,  (0) 
and we compared them with the statistical properties of our numerical experiments. 

The boundary-element method approximates very well the dispersive nature of 
gravity waves and is therefore the preferred numerical method for our study of 
reflection and transmission of long waves in a shallow channel with irregular bottom 
topography. We generated continuous piecewise-linear random bottom profiles using 
a random-number generator. For each realization of the bottom topography we 
allowed a Gaussian pulse (for the potential) to propagate over the rough region and 
we recorded the reflected signal. We then computed the statistical properties of the 
numerical reflected signals. We have found good agreement between the theory and 
numerical computations. Thus not only have we validated our asymptotic theory 
numerically but also we have shown that the boundary-element method is a reliable 
and efficient tool for application problems in linear water-wave propagation. 

A. Nachbin's work has been supported by the Brazilian Ministry of Education 
(CAPES) and by the National Science Foundation under grant DMS 9003227. 
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